Welcome to HTIPS

भिन्न की परिभाषा, सूत्र, ट्रिक्स और उदाहरण

भिन्न (fraction)

इस पेज पर आप गणित के महत्वपूर्ण अध्याय भिन्न की परिभाषा, सूत्र, ट्रिक्स और उदाहरण आदि को विस्तार से पढ़ेंगे।

पिछले पेज पर हम गणित के अध्याय दशमलव भिन्न की समस्त जानकारी शेयर कर चुके है उसे जरूर पढ़े।

चलिए अब भिन्न की जानकारी को पढ़कर समझते है।

भिन्न किसे कहते है

जब किसी राशि को कई बराबर भागों में बांटकर उनमें से कुछ भाग लिए जाए तो उसे भिन्न के रूप में व्यक्त किया जाता हैं। यदि कोई संख्या x/y के रूप में हो, तो उसे भिन्न कहते हैं।

यहाँ x और y कोई पूर्णाक संख्या हैं

भिन्न को अंग्रेजी में हम Fraction कहते है (भिन्न = Fraction)

आरोही क्रम (Ascendimg Order) :

जब दो या अधिक भिन्नों को बढ़ते क्रम में रखा जाता हैं तब भिन्नों के इस क्रम को आरोही क्रम कहते हैं।

इस क्रम में सबसे छोटा भिन्न सबसे पहले तथा सबसे बड़ा भिन्न सबसे अंत में लिखा जाता हैं।

अवरोही क्रम (Descending Order) :

जब दो या अधिक भिन्नों को घटते क्रम में सजाया जाता हैं तब भिन्नों के इस क्रम को अवरोही क्रम कहते हैं।

इस क्रम में सबसे बड़ा भिन्न सबसे पहले तथा सबसे छोटा भिन्न सबसे अंत में लिखा जाता हैं।

भिन्न के प्रकार

भिन्न के मुख्यतः तीन प्रकार से जाना जाता है। जो निम्नानुसार है।

  1. साधारण भिन्न
  2. दशमलव भिन्न
  3. सतत/वित्तत लगड़ी भिन्न

1. साधारण भिन्न

जब किसी संख्या का पूर्ण भाग किसी संख्या में नही जाता है तो उसे हम साधारण भिन्न कहते है। जैसे 4 में 5 से भाग दिया जाए तो इसका पूरा भाग नही जाता है।

अतः 4/5 एल साधारण भिन्न है।

साधारण भिन्न भी तीन प्रकार की होती है।

  • उचित भिन्न
  • अनुचित भिन्न
  • मिश्रित भिन्न

(a). उचित भिन्न :- ऐसे भिन्न जिसमें हर अंश की अपेक्षा छोटा हो साधारण भिन्न कहलाता हैं।

उदाहरण :- 2/5, 3/11, 7/9

(b). अनुचित भिन्न :- ऐसा भिन्न जिसमें अंश, हर की उपेक्षा बड़ा होता हैं।

उदाहरण :- 7/4, 11/3, 48/5

(c). मिश्रित भिन्न :- ऐसा भिन्न जिसमें साधारण संख्या और उचित भिन्न का मिश्रण हो उसे मिश्रित भिन्न कहा जायेगा। और अनुचित भिन्न को हल करने पर मिश्रित भिन्न प्राप्त होता हैं।

उदाहरण :- 1¼, 4⅔, 3⅘, 8⅝

2. दशमलव भिन्न

दशमलव भिन्न ऐसा भिन्न होता हैं जिसका हर 10 या 10 की कोई घातों के रूप में हो, उसे दशमलव भिन्न कहते हैं।

दूसरे शब्दों में यदि अंश में हर से भाग दिया जाए तो दशमलव में प्राप्त राशि दशमलव भिन्न कहलायेंगी।

उदाहरण :- 6/10, 12/100, 528/1000, 3/4, 4/5

दशमलव भिन्न 2 प्रकार के होते हैं।

  • साधारण आवृत दशमलव भिन्न
  • मिश्रित आवृत दशमलव

साधारण आवृत दशमलव भिन्न : ऐसा भिन्न जिसमे दशमलव बिंदु के बाद सभी अंको की पुनरावृत्ति होती हैं, उसे साधारण आवृत दशमलव भिन्न कहते हैं।

उदाहरण :- 3.1515151515————-3.15

मिश्रित आवृत दशमलव भिन्न : ऐसा दशमलव भिन्न जिसमें दशमलव बिंदु के बाद 1 या 2 अंकों के बाद वाले वालें अंको की पुनरावृत्ति होती हैं उसे मिश्रित आवृत दशमलव भिन्न कहते हैं।

उदाहरण :- 0.24343434343434—————-0.243

3. सतत/वित्तत/लगड़ी भिन्न

इस प्रकार की भिन्न की कोई निश्चित परिभाषा नहीं होती क्योंकि इसके अंश और हर में कोई निश्चित नियम लागू नही होती हैं।

उदाहरण :- 1/2/3/4/5

जरूर पढ़े :

साधारण भिन्न और दशमलव भिन्न के प्रश्न हल करने की ट्रिक्स

Trick#1. यदि a/c, b/c, e/f, g/h, में हर तथा अंश के अंतर बराबर हों अर्थात b-a = d-c = f-e = h-g, तो जिसका अंश सबसे छोटा हैं वह भिन्न सबसे छोटी होगी तथा जिसका अंश सबसे बड़ा हैं वह भिन्न सबसे बड़ी होगी ।

Trick#2. जब भिन्नों का अंश समान हो, तो जिस भिन्न का हर सबसे बड़ा होगा, वह भिन्न सबसे छोटी तथा जिस भिन्न का हर सबसे छोटा होगा, वह भिन्न सबसे बड़ी होगी।

Trick#3. जब भिन्नों का हर समान हो, तो वह भिन्न सबसे बड़ी होगी जिसका अंश सबसे बड़ा होगा तथा वह भिन्न सबसे छोटी होगी जिसका अंश सबसे छोटा होगा।

Trick#4. यदि दो या दो से अधिक भिन्नों की श्रेणी में अंश हमेशा हर से छोटा एवं अंश और हर के बीच का अंतर समान हो, तो वह वह भिन्न सबसे बड़ी होगी जिसका अंश सबसे बड़ा होगा।

Trick#5. यदि दो या दो से अधिक भिन्नों की श्रेणी में अंश हमेशा हर से बड़ा हो एवं अंश और बीच के बीच का अंतर समान हो तो वह भिन्न सबसे बड़ा होगा जिसका अंश सबसे छोटा होगा।

Trick#6. जब मिश्र भिन्नों का योगफल या अंतर ज्ञात करना हो, तो निम्न प्रकार ज्ञात करें।
ac + b/c + de + e/f – gh + h/I = (a + d – g) + (b/c + e/f/ – h/I)

Trick#7. जब मिश्र भिन्न गुणा या भाग के रूप में रहे, तो उसका हल निम्न प्रकार करें।
(ac + b) / c × (de + e) / f = (a×d) + (a×e/f) + (d×b/c) + (b/c×e/f)

भिन्नों की तुलना पर आधारित उदाहरण

1. 2/5, 1/4, 2/3, 5/6 भिन्नों में सबसे बड़ा भिन्न क्या हैं?

Ans. 5/6

2. 2/5, 1/4, 2/3, 5/6 भिन्नों में सबसे छोटा भिन्न क्या हैं?

Ans. 1/4

3. 2/5, 1/4, 2/3, 5/6 भिन्नों को आरोही ( बढ़ते क्रम ) क्रम में लिखिए?

Ans. 1/4, 2/5, 2/3, 5/6,

4. 2/5, 1/4, 2/3, 5/6 भिन्नों को अवरोही ( घटते क्रम ) क्रम में लिखिए?

Ans. 5/6, 2/3, 2/5, 1/4,

5. 19/12, 22/15, 14/7, 9/2 भिन्नों में सबसे बड़ा भिन्न क्या है?

Ans. 9/2

6. 19/12, 22/15, 14/7, 9/2 भिन्नों में सबसे छोटा भिन्न कौन सा हैं?

Ans.  22/15

7. 19/12, 22/15, 14/7, 9/2 भिन्नों को आरोही क्रम में लिखिए?

Ans.  22/15, 19/12, 14/7, 9/2

8. 19/12, 22/15, 14/7, 9/2 भिन्नों को अवरोही क्रम में लिखिए?

Ans. 9/2, 14/7, 19/12, 22/15

9. 3/5, 4/9, 2/7 को अवरोही क्रम में लिखिए?

Ans. 3/5, 4/9, 2/7,

10. 7/10, 5/7, 10/11, 2/5, 4/9 निम्न भिन्नों में से सबसे बड़ा भिन्न कौन सा हैं?

Ans. 10/11

11. 11/14, 3/7, 5/9, 7/11, 2/3 निम्न भिन्नों में से सबसे छोटा भिन्न कौन सा हैं?

Ans.  3/7

12. 4/7, 11/14, 8/11, 7/10, 1/4 निम्न भिन्नों में से सबसे बड़ा भिन्न कौन सा हैं?

Ans. 11/14

प्रतिशत वृद्धि और कमी पर आधारित उदाहरण

13. यदि अंश और हर में क्रमशः 20% और 30% बड़ा दिया जाए तो नया भिन्न 9/13 प्राप्त होता हैं तो बताइए मूल भिन्न/पुराना भिन्न क्या हैं?
A. 2/3
B. 5/7
C. 3/4
D. 3/11

हल:- अंश / हर
100 + 20 / 100 + 30 = 9/13
120 / 130 = 9/13
= 9 / 13 × 130 /120
= 3/4

Ans. 3/4

14. यदि किसी भिन्न के अंश में 20% की वृद्वि और हर में 10% की कमी करने पर 16 / 21 प्राप्त होता हैं तो बताइए मूल भिन्न क्या हैं?
A. 3/4
B. 4/7
C. 5/7
D. 6/11

हल:- अंश / हर
100 + 20 / 100 – 10 = 16/21
120 / 90 = 16/21
16 / 21 × 90 /120
16/21 × ¾
4/7

Ans.  4/7

15. किसी भिन्न के अंश में 15% की वृद्धि करने पर और हर में 8% की कमी करने पर नया भिन्न 15/16 प्राप्त होता हैं, तो पुराना भिन्न बताइये?
A. 2/3
B. 3/4
C. 4/7
D. 7/13

हल:- अंश / हर
100 + 15 / 100 – 8 = 15/16
115/92 = 15/16
15/16 × 92/115
3/4

Ans. 3/4

16. किसी भिन्न के अंश में 40% की वृद्धि करने पर हर को 2 गुना करने पर नया भिन्न 5/8 प्राप्त होता हैं, तो पुराना भिन्न बताये?
A. 23/90
B. 25/28
C. 17/23
D. 27/33

हल:- अंश / हर
100 + 40 / 100 × 2 = ⅝
140/200 = ⅝
7/10 = ⅝
5/8 × 10/7
25/28

Ans. 25/28

17. किसी संख्या का 5/12 यदि 100 हैं तो उस संख्या का 15/4 भाग क्या होगा?
A. 900
B. 1100
C. 1300
D. 1700

हल:- 1 × 5/12 = 100
5/12 = 100
1 = 100 × 12/5
1 = 20 × 12
1 = 240
इसी संख्या का 15/4 = 240 × 15/4
= 60 × 15
= 900

Ans.  900

18. एक खम्बे का 1/2 भाग सफेद और 1/3 भाग नीला हैं, यदि शेष भाग पीला हो और वह दो मीटर लंबा हैं तो खम्बे की कुल लम्बाई बताइये?
A. 700
B. 800
C. 900
D. 1000

हल: सफेद = 1/2 भाग,नीला = 1/3 भाग,
पीला = 2 मीटर लम्बा
= 1 – ( 1/2 + 1/3 )
= 1 – 5 / 6
= 1 / 6
1/6 = 2
2× 6 = 12 मीटर

Ans. 900

भिन्न से सम्बंधित महत्वपूर्ण प्रश्न

नीचे कुछ भिन्नों के प्रश्न दिए गए हैं जिनकी प्रैक्टिस करके आप परीक्षा में सही उत्तर टिक कीजिए।

19. एक घन का 1/3 भाग उसके 1/4 भाग के 12 अधिक है तो उस घन का 3/4 भाग क्या हैं?

Ans. 108

20. किसी कक्षा में 2/3 भाग विघार्थी उपस्थित थे जिसकी संख्या 40 थी यदि 2/3 भाग लड़कियां हो तो लड़कियों की कुल संख्या बताइये?

Ans. 40

21. एक गांव में रहने वाले कुल लोगों में से 1/3 भाग नोकरी करते हैं, जबकी 1/4 भाग व्यापार करते हैं, और 1/4 भाग कृषि करते हैं बताइये गांव का कितना हिस्सा बेरोजगार हैं?

Ans. 1/6

22. किसी टैंक के 1/4 भाग भरे होने पर 135 लीटर पानी आता हैं यदि उसमें 180 लीटर पानी रखा जाए तो उस टंकी का कौन सा भाग होगा?

Ans. 1/3

23. 13/22, 13/19, 13/28, 13/35  संख्याओं को आरोही क्रम में लिखी लिखिए?

Ans. 13/35, 13/28, 13/22, 13/19

24. वह छोटी से छोटी संख्या जिसे 12/5 के हर में जोड़ने पर एक उचित भिन्न प्राप्त होगी?

Ans. 8

25. वह व्यक्ति अपनी आय का 1/3 भाग रहने में, 1/8 भाग कपड़े में तथा 10 प्रतिशत भाग दान में खर्च करता हैं, यदि उसके पास 318 बचते है तो उसकी आय क्या है?

Ans.720

26. राजेन्द्र अपनी आय का 1/4 भाग शिक्षा में तथा 1/2 भाग खाने में एवं शेष का 1/8 भाग कपड़े में खर्च करता है यदि उसकी आमदनी 7200 हो तो वह कपड़े पर कितना खर्च करता हैं?

Ans. 225

27. दो परिमेय संख्याओं का योग 1/2 हैं यदि इनमें से एक संख्या -8/19 हो,तो दूसरी संख्या क्या होगी?

Ans. 35/38

28. 7/8 में कौन सी भिन्न संख्या जोड़ी जाए, की योगफल 5/8 प्राप्त हो?

Ans. 103/72

29. 5/12 से क्या घटाया जाए, की प्राप्त भिन्न 7/42 हो?

Ans. 4/21

30. मोहन लाल सहगल ने अपनी पूँजी का 1/4 भाग अपने लड़के को, 1/3 भाग अपनी पत्नी को तथा 1/8 भाग अपनी पुत्री को दे दिया। अब उसके पास उसकी पूंजी का कितना भाग शेष रह गया?

Ans. 7/24

जरूर पढ़े :

आशा है गणित के इस अध्याय भिन्न की जानकारी आपको पसंद आएगी।

यदि इस पोस्ट से संबंधित कोई भी प्रश्न है तो कमेंट करे।

यदि आपको यह जानकारी पसंद आयी है तो फेसबुक और व्हाट्सप्प आदि पर अपने दोस्तों और रिस्तेदारो के साथ शेयर करे।

Comments · 14

  1. Nice sir bahot hi saral bhasa me btaya hai thanks.

    Hello friend agar aap ko fraction ke bare me aur jankari chahiye ho aap mere website par visit kar sakte hai.

Leave a Reply

*

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Welcome to HTIPS

×
Product added to cart

No products in the cart.