इस पेज पर आप गणित विषय के महत्वपूर्ण अध्याय प्राकृतिक संख्या को पढ़कर समझेंगे।
पिछले पेज पर हमने गणित के सूत्रों की जानकारी शेयर की है उसे जरूर पढ़े।
चलिए इस पेज पर प्राकृतिक संख्या की परिभाषा, प्रकार और उदाहरण की जानकारी पढ़ते हैं।
प्राकृतिक संख्या की परिभाषा
1 से अनंत तक सभी धनात्मक संख्याओं को प्राकृतिक संख्या कहते है। सभी प्राकृतिक संख्याएँ पूर्ण संख्याएँ होती है, लेकिन सभी पूर्ण संख्याएँ प्राकृतिक संख्याएँ नहीं होती है।
प्राकृतिक संख्या किसे कहते है
गिनती में उपयोग की जाने वाली सभी संख्याएँ, प्राकृतिक संख्याएँ कहलाती हैं।
उदाहरण : 1, 2, 3, 4, 5, 6, 7, 8, 9, …………..∞
जिन संख्याओं को किसी वस्तु के गिनने के काम में लिया जाता हैं उन्हें प्राकृतिक संख्याएँ कहते है।
जैसे :-
- टेबल पर 5 किताबें रखी हैं।
- मेज पर 4 पेन्सिल रखी हैं।
- बस्ते में 6 रजिस्टर रखे हैं।
प्राकृतिक संख्या का उपयोग क्रम में रखने के लिए भी किया जाता हैं।
जैसे :-
- मैंने कक्षा 12वीं में दूसरा स्थान पाया।
- सीता ने Law में 6वां स्थान प्राप्त किया।
प्राकृतिक संख्या को N से प्रदर्शित करते हैं।
प्राकृतिक संख्या को अंग्रेजी में Natural Number कहते हैं।
आपके लिए उपहार : Math की Free eBook Download करे।
प्राकृतिक संख्याओं के सूत्र
- प्रथम n प्राकृतिक विषम संख्याओं का औसत = n
- प्रथम n प्राकृतिक सम संख्याओं का औसत = n + 1
- प्राकृतिक संख्याओं का योग = (पहली संख्या + अंतिम संख्या / 2) × n
प्रथम n प्राकृत संख्याओं का औसत = ( n + 1 ) / 2 - लगातार n तक विषम प्राकृत संख्याओं का औसत = (n + 1) / 2
- लगातार n तक विषम प्राकृत संख्या का योग = (n/2 + 1)
- N = (अंतिम संख्या – पहली संख्या / वर्ग अंतराल) +1
- प्रथम n प्राकृत संख्याओं के वर्गों का योग = n( n + 1 )( 2n + 1 ) / 6
- प्रथम n प्राकृत संख्याओं के घनों का योग = [ n (n + 1) / 2 ]²
प्राकृतिक संख्याओं के प्रकार
- सम प्राकृतिक संख्या
- विषम प्राकृतिक संख्या
- अभाज्य प्राकृतिक संख्या
1. सम प्राकृतिक संख्या
वे प्राकृतिक संख्या जो 2 से विभाजित हो जाती है, उन्हें सम प्राकृतिक संख्या कहते है।
जैसे :- 4, 6, 8, 10, 12, 14 आदि।
2. विषम प्राकृतिक संख्या
वे प्राकृतिक संख्या जो 2 से विभाजित नहीं होती है, विषम प्राकृतिक संख्या कहते है।
जैसे :- 3, 5, 7, 9, 11, 13, 15 आदि।
3. अभाज्य प्राकृतिक संख्या
वे प्राकृतिक संख्या जो 1 से और स्वंय से विभाजित होती है, अभाज्य प्राकृतिक संख्या कहते है।
जैसे :- 2, 3, 5, 7 आदि।
महत्वपूर्ण तथ्य
- सबसे छोटी प्राकृतिक संख्या 1 होती हैं।
- सबसे बड़ी प्राकृत संख्या अनन्त हैं।
- समुच्चय में 0 को प्राकृतिक संख्या माना जाता है।
- “प्राकृतिक संख्या” संख्या पद्धति का एक भाग हैं।
- प्राकृतिक संख्या को N द्वारा प्रदर्शित किया जाता है।
- प्राकृतिक संख्याओं को प्राचीन इतिहास के आधार पर हिन्दी अरबी संख्या कहाँ जाता हैं।
- प्राकृत संख्या में 1 इकाई की लगातार बढ़ोतरी होती रहती है।
- प्राकृत संख्या = 0 < N ≤ 1 होता हैं।
- समुच्चय में N0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, ……) द्वारा सूचित किया जाता है।
प्राकृतिक संख्या से संबंधित प्रश्न और हल
Q.1 1+2+3+4 ……………… 38+39+40 = ?
A. 820
B. 940
C. 240
D. 1860
हल:- प्रश्नानुसार,
1+2+3+4 ……………… 38+39+40 = ?
अंतिम संख्या = 40
प्रथम संख्या = 1
N = (अंतिम संख्या – पहली संख्या)/वर्ग अंतराल + 1
N = ( 40 – 1 ) / 1 + 1
N = 39 + 1
N = 40
योग = ( पहली संख्या + अंतिम संख्या / 2 ) × n
योग = (1 + 40 ) / 2 × 40
योग = 41 × 40 / 2
योग = 41 × 20
योग = 820
Ans. 820
Q.2 1 से 39 तक कि सभी विषम संख्याओं का योग बताइए?
A. 200
B. 300
C. 400
D. 800
हल:- प्रश्नानुसार,
1 + 3 + …………….………+ 37 + 39
पहली संख्या = 1
अंतिम संख्या = 39
N = (अंतिम संख्या – पहली संख्या)/वर्ग अंतराल + 1
N = (39 – 1)/2 + 1
N = 38/2 + 1
N = 19 + 1
N = 20
प्राकृतिक संख्याओं का योग = (पहली संख्या + अंतिम संख्या)/2 × n
योग = (1 + 39)/2 × 20
योग = 40/2 × 20
योग = 20 × 20
योग = 400
Ans. 400
Q.3 1 से 20 तक की सभी प्राकृतिक संख्याओं के वर्गों का योग बताये?
A. 1,385
B. 4,350
C. 2,260
D. 2,870
हल: प्रश्नानुसार,
n = 20
योग = n (n + 1) (2n + 1) / 6
योग = 20 (20 + 1) (2 × 20 + 1) / 6
योग = 20 × 21 (40 + 1) / 6
योग = (20 × 21 × 41) / 6
योग = 17,220 / 6
योग = 2,870
Ans. 2,870
Q.4 1 से 40 तक की सभी प्राकृतिक संख्याओं के घनों का योग क्या हैं?
A. 468,900
B. 672,400
C. 678,908
D. 566,902
हल:- प्रश्नानुसार,
[n (n + 1) / 2]²
n = 40
[40 (40 + 1) / 2]²
(40 × 41 / 2)²
(1,640 / 2)²
(820)²
672,400
Ans. 672,400
Q.5 किसी प्राकृत संख्या के वर्ग के तिगुने में से उस संख्या के चार गुने को घटाने पर प्राप्त संख्या उस संख्या से 50 अधिक हैं। वह संख्या हैं?
A. 4
B. 5
C. 6
D. 10
हल:- प्रश्नानुसार,
माना, प्राकृतिक संख्या x हैं।
तब, x² × 3 – 4x = x + 50
3x² – 4x – x = 50
3x² – 5x = 50
3x² – 5x – 50 = 0
3x² + 10x – 15x – 50 = 0
x (3x + 10) – 5 (3x + 10) = 0
(x – 5) (3x + 10) = 0
x – 5 = 0 , 3x + 10 = 0
x = 5 या 3x = – 10
x = 5 या x = – 10/3 (प्राकृतिक संख्या नहीं हैं।
Ans. x = 5 प्राकृतिक संख्या हैं।
Q.6 किसी प्राकृत संख्या के घन में से उसका वर्ग घटाने पर परिणाम 48 प्राप्त होता हैं। संख्या होगी?
हल:- प्रश्नानुसार,
माना, प्राकृतिक संख्या x हैं।
x³ – x² = 48
x² (x – 1) = 48
x² (x – 1) = 16 × 3
4² × (4 – 1)
x = 4
Q.7 किसी प्राकृत संख्या के घन से उसका वर्ग घटाने पर 100 प्राप्त होता हैं। वह संख्या हैं?
हल:- प्रश्नानुसार,
माना, प्राकृतिक संख्या x हैं।
x³ – x² = 100
x² (x – 1) = 100
x² (x – 1) = 25 × 4
5² × (5 – 1)
x = 5
जरूर पढ़िए :
उम्मीद हैं आपको प्राकृतिक संख्या की जानकारी पसंद आयी होगी।
प्राकृतिक संख्याओं से संबंधित किसी भी प्रश्न के लिए कमेंट करे।