क्रमचय एवं संचय के सूत्र, नियम और उदाहरण

इस पेज पर आप गणित के अध्याय क्रमचय एवं संचय को पढ़ेंगे जो समस्त परीक्षाओ के लिए महत्वपूर्ण है।

पिछले पेज पर हमने ऊँचाई एवं दूरी की जानकारी शेयर की हैं तो उस पोस्ट को भी पढ़िए।

चलिए आज हम क्रमचय एवं संचय के सूत्र, नियम और उदाहरण की समस्त जानकारी पढ़ते और समझते हैं।

क्रमचय किसे कहते हैं

क्रमचय का अर्थ हैं सजाना (Arrangement) अर्थात दी हुई वस्तुओं से कुछ या सभी वस्तुओं को सजाने के भिन्न-भिन्न कर्मों को क्रमचय कहते हैं।

(a). n असामान वस्तुओं में से r वस्तुओं को लेकर बनाए गए

क्रमचयों कि संख्या = nPr
= n!/(n – r)!

(b). n वस्तुओं के समूह में सभी वस्तुओं को एक साथ लेने पर, जिसमें एक प्रकार की वस्तुओं की संख्या P, दूसरे प्रकार की वस्तुओं की संख्या P, दूसरे प्रकार की वस्तुओं की संख्या q तथा तीसरे प्रकार की वस्तुओं की संख्या r हो, तो n वस्तुओं के क्रमचयों की संख्या = n!/p!q!r!

(c). n असमान वस्तुओं में r वस्तुओं को लेकर बनाए गए क्रमचयों कि संख्या जबकि प्रत्येक वस्तु क्रमचय में r बार आ सकती हैं।

क्रमगुणित (Factorial)

1 से लेकर n तक की लगातार संख्याओं के गुणनफल को क्रमगुणित कहते हैं इसे संकेत n! से व्यक्त करते हैं।

n! = n(n – 1)(n – 2)(n – 3) ……..(3, 2, 1)
इसी तरह 5! = 5 × 4 × 3 × 2 × 1
= 120

चक्रीय क्रमचय (Circular Permutation)

यदि वामावर्त एवं दक्षिणावर्त कर्म असमान हो, तो n असमान वस्तुओं के वृतीय क्रमचयों की संख्या = (n – 1)!

यदि वामावर्त एवं दक्षिणावर्त कर्म समान हो, तो n असमान वस्तुओं के वृतीय क्रमचयों की संख्या = 1/2 × (n – 1)!

संचय किसे कहते हैं

संचय का अर्थ है चुनाव अर्थात दी हुई वस्तुओं में एक साथ कुछ या सभी वस्तुओं को लेकर उनके क्रम का ध्यान रखे बिना जो समूह बनाए जाते हैं उन्हें संचय कहते हैं।

n असमान वस्तुओं में से r वस्तुएं एक साथ लेकर बने संचयों की संख्या = nCr
= n!/r! × (n – r)!

जरूर पढ़िए:

क्रमचय एवं संचय के उदाहरण

Q1. 8 रंगों की झण्डियां हैं उनमें से 5 झण्डियां लेकर कितने संकेत दिए जा सकते हैं?
A. 6720
B. 5780
C. 4030
D. 7890

हल:- n(E) = nPr
= 8!/(8 – 5)!
= 8!/3/
= (8 × 7 × 6 × 5 × 4 × 3 × 2 × 1) / (3 × 2 × 1)
= 6720
Ans. 6720

Q2. 2 पार्सल हैं और 6 डाकखाने हैं बताएं, पार्सलों की कितने प्रकार से रजिस्ट्री कराई जा सकती हैं?
A. 729
B. 216
C. 18
D. 30

हल:- पहले पार्सल की रजिस्ट्री कराने का तरीका = 6
दूसरे पार्सल की रजिस्ट्री कराने का तरीका = 6
इसी तरह तीसरे पार्सल की रजिस्ट्री कराने का तरीका = 6
अभीष्ट तरीका = 6³
= 6 × 6 × 6
= 216
Ans. 216

Q3. एक भद्रपुरुष को अपने 6 मित्रों को निमंत्रण देना हैं वह कितने ढंग से उन मित्रों को निमंत्रण पत्र भेज सकता हैं, यदि उसके पास निमंत्रण पत्र भेजने के लिए 4 नौकर हैं?
A. 1024
B. 2048
C. 512
D. 4096

हल:- पहले मित्र को निमंत्रण पत्र भेजने के ढंग = 4
क्योंकि 4 नौकरों में से किसी एक के द्वारा निमंत्रण पत्र भेजा जा सकता हैं।
दूसरे मित्र को निमंत्रण पत्र भेजने के ढंग = 4
इसी तरह, हर एक मित्र को 4 ढंग से निमंत्रण पत्र भेजे जा सकते हैं।
स्पष्टता कार्य सम्पन्न करने के लिए एक साथ सपन्न करना होगा।
अभीष्ट ढंग = 4 × 4 × 4 × 4 × 4 × 4
अभीष्ट ढंग = 4096
Ans. 4096

Q4. एक अक्षर ताले में तीन चक्र हैं जिनमें प्रत्येक पर 5 अलग-अलग अक्षर बैठाए गए हैं कितने असफल तरीकों से ताले को खोलने का प्रयत्न किया जा सकता हैं?
A. 243
B. 242
C. 124
D. 125

हल:- प्रथम चक्र में अक्षर बैठाने का तरीका = 5
इसी प्रकार, प्रत्येक चक्र में अक्षर बैठाने का तरीका = 5
कुल तरीका = 5³
= 5 × 5 × 5
= 125
लेकिन इनमें से एक तरीका ताला खोलने का हैं।
ताला खोलने का असफल तरीका = 125 – 1
= 124
Ans. 124

Q.5 शब्द RECOVER के अक्षरों से कितने विभिन्न व्यवस्थाएं की जा सकती हैं?
A. 210
B. 1260
C. 5040
D. 120

हल:- शब्दों की संख्या उतनी ही होगी जितनी कि RECOVER शब्द के 7 अक्षरों के कुल क्रमचयों की संख्या होगी।
यहाँ अक्षरों में सभी असमान नहीं बल्कि कुछ असमान हैं, तो कुछ समान तथा सभी को लेकर सजाना हैं अब दो अक्षर R और E दो बार प्रयुक्त हुई हैं तथा बाकी असमान हैं।
कुल अक्षर असमान = 7!/2!2!
= (7 × 6 × 5 × 4 × 3 × 2 × 1) / (2 × 1 × 2 × 1)
= 1260
Ans. 1260

Q6. दस लाख से बड़ी संख्याओं की संख्या ज्ञात करें जो 2, 3, 0, 3, 4, 2, 3, से बनाई जा सकती हैं?
A. 360
B. 60
C. 420
D. 630

हल:- दस लाख से बढ़ी संख्याएँ 7 अंकों की होगी।
यहाँ 7 अंक दिए गए हैं जिनमें कुछ समान हैं तथा कुछ असमान हैं।
7 अंकों की संख्याओं की संख्या = 7! /2! × 3!
= (7 × 6 × 5 × 4 × 3!) / 2 × 1 × 3!
= 420
लेकिन 7 अंकों की वे संख्याएँ जिनमें बाई ओर 0 हैं इस लाख से कम हैं ऐसी संख्याओ की संख्या निकालने के लिए बाकी छः अंकों को सजाना हैं
बाकी छः अंकों की क्रमचयों की संख्या = 6! / 2! 3!
= 6 × 5 × 4 × 3! / (2 × 1 × 3!)
= 3 × 5 × 4
= 60
दस लाख से बड़ी संख्याओं की संख्या = 420 – 60
= 360
Ans. 360

Q7. 2, 3, 4, 5, 6, 0 अंकों से 400 और 1000 के बीच में कितनी संख्याएँ बन सकती हैं?
A. 60
B. 20
C. 80
D. 40

हल:- 400 और 1000 के बीच की संख्याएँ तीन अंको की होगी एवं सैकड़ों के स्थान पर विशेष अंक 4 या 5 या 6 होगा।
अब सैकड़ा के स्थान पर अंक सजाने के ढंगों की संख्या = 3
बाकी दो स्थानों की शेष पांच अंको (छः अंको में एक अंक 4 या 5 या 6 को सैकड़ा के स्थान पर रखने के बाद से भरने के तरीकों की संख्या = 5!/(5 – 2)!
= 5!/3!
= (5 × 4 × 3 × 2 × 1) / 3 × 2 × 1
= 20
Ans. 20

Q.8 अंक 1, 2, 3, 4, 5, 6, 7, से तीन अंकों की कितनी संख्याएं बनाई जा सकती हैं जबकि किसी भी संख्या में अंक पुनरावृत्त हो सकते हैं?
A. 125
B. 729
C. 239
D. 343

हल:- चूंकि संख्याएँ तीन अंकों की हैं और प्रत्येक तीन बार पुनरावृत्त हो सकता हैं।
अंको की संख्या = 7
संख्याओं की अभीष्ट संख्या
7^3 = 7 × 7 × 7
= 343

Q9. 25 लड़के एवं 10 लड़कियों से नौविहार के लिए 8 के कितने विभिन्न दल बनाए जा सकते हैं यदि प्रत्येक दल में 5 लड़के और 3 लड़कियां हों?
A. 754526
B. 6375600
C. 767162
D. 636075

हल:- 25 लड़कों में 5 के चुनने के ढंगों की संख्या = 25! / 5! × 20!
10 लड़कियों में 5 के चुनने के ढंगों की संख्या = 10! / (3! × 7!)
अभीष्ट संख्या = 25! / (5! × 20!) × 10! / (3! × 7!)
= (25 × 24 × 23 × 22 × 21) / (3 × 4 × 3 × 2)
= 6375600
Ans. 6375600

Q.10 बच्चों में से 3 बच्चों की एक टोली बनानी हैं, यह कितने प्रकार से संभव हैं?
A. 56
B. 48
C. 36
D. 76

हल:- 8!/3! × (8 – 3)!
= 8! / 3! × 5!
= (8 × 7 × 6 × 5 × 4 × 3 × 2 × 1) / ( 3 × 2 × 1) × (5 × 4 × 3 × 2 × 1)
= 56
Ans. 56

Q.11 LEADER शब्द के अक्षर कितने विविध प्रकार से व्यवस्थित किए जा सकते हैं?
A. 720
B. 144
C. 72
D. 360

हल:- अभिष्ट प्रकार = 6!/2!
= (6 × 5 × 4 × 3 × 2 × 1) / (2 × 1)
= 6 × 5 × 4 × 3
= 360
Ans. 360

Q.12 स्वरों को हर बार साथ-साथ रखते हुए शब्द SOFTWARE के अक्षरों को कितने अलग-अलग प्रकार से क्रमबद्ध किया जा सकता हैं?
A. 13440
B. 1440
C. 360
D. 4320

हल:- अभीष्ट प्रकार = 6! × 3!
= 6 × 5 × 4 × 3 × 2 × 1 × 3 × 2 × 1
= 4320
Ans. 4320

Q.13 एक पंक्ति में सात कुर्सियों पर 4 पुरुष और 3 महिलाएं इस प्रकार कितने तरीके से बैठ सकते हैं कि महिलाएं सम (Even) स्थान पर हों?
A. 428
B. 256
C. 144
D. 343

हल:- अभीष्ट तरीकों की संख्या = 4! × 3!
= 4 × 3 × 2 × 1 × 3 × 2 × 1
= 144
Ans. 144

Q.14 3 लड़कियां और 4 लड़के सात कुर्सियों की पंक्ति में इस प्रकार बैठते हैं कि सभी तीन लड़कियां हमेशा एक साथ बैठती हैं ऐसे कितने क्रम सम्भव हैं?
A. 720
B. 576
C. 145
D. 480

हल:- अभीष्ट संभव क्रम = 5! × 3!
= 5 × 4 × 3 × 2 × 1 × 3 × 2 × 1
= 720
Ans. 720

Q.15 शब्द DRASTIC के अक्षरों का ऐसे कितने क्रम में संयोजन सम्भव हैं जिनमें सभी स्वर एक साथ आते हैं?
A. 540
B. 360
C. 1440
D. 720

हल:- संयोजन की कुल संख्या = 6! × 2!
= 6 × 5 × 4 × 3 × 2 × 1 × 2 × 1
= 1440
Ans. 1440

Q.16 4 लड़कों और 3 लड़कियों का एक पंक्ति में से इस प्रकार बिठाना हैं कि दो लड़के अलग थगल न बैठें ऐसे कितने भिन्न-भिन्न तरीकों से किया जा सकता हैं?
A. 5040
B. 72
C. 1086
D. 144

हल:- अभीष्ट तरीके = 4! × 3!
= 4 × 3 × 2 × 1 × 3 × 2 × 1
= 144
Ans. 144

Q.17 एक शेल्फ पर अर्थशास्त्र की 4 प्रबंधन की 3 और सांख्यिकी की 4 पुस्तकें हैं इन पुस्तकों को अलग-अलग कितनी तरह से क्रमबद्ध किया जा सकता हैं ताकि अर्थशास्त्र की पुस्तकें साथ-साथ रखी जा सकें?
A. 967680
B. 120960
C. 5040
D. 40320

हल:- प्रश्नानुसार,
अभीष्ट प्रकार = 8! × 4!
= 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 × 4 × 3 × 2 × 1
= 967680

Ans. 967680

Q.18 अलग-अलग कितनी तरह से पुस्तकों को इस प्रकार लगाया जा सकता हैं कि प्रत्येक विषय की पुस्तकें साथ-साथ रहें?
A. 940
B. 1728
C. 2240
D. 4010

हल:- प्रश्नानुसार,
कुल तरीके = 3! × 2! × 3! × 1! × 4!
= 3 × 2 × 1 × 2 × 1 × 3 × 2 × 1 × 1 × 4 × 3 × 2 × 1
= 1728

Ans. 1728

Q.19 सभी पुस्तकों को बेतरतीब कितनी तरह से लगाया जा सकता हैं?
A. 81000
B. 40320
C. 415650
D. 362880

हल:- प्रश्नानुसार,
सभी पुस्तकों को बेहरतीब रखने के ढंग
= 9!
= 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
= 362880

Ans. 362880

Q.20 केवल प्रबंधन की पुस्तकें साथ-साथ रहें इस प्रकार पुस्तकों को शेल्फ पर कितनी तरह से लगाया जा सकता हैं?
A. 30240
B. 8640
C. 720
D. 18150

हल:- प्रश्नानुसार,
पुस्तक रखने के ढंग जिनमें केवल प्रबंधन की पुस्तकें एक साथ रहें = 7! × 3!
= 7 × 6 × 5 × 4 × 3 × 2 × 1 × 3 × 2 × 1
30240

Ans. 30240

Q.21 अलग-अलग कितने प्रकार से शब्द ‘PADDLED’ के अक्षरों को क्रमबद्ध किया जा सकता हैं?
A. 910
B. 2520
C. 5040
D. 840

हल:- प्रश्नानुसार,
अभीष्ट प्रकार = 7!/3!
= 7 × 6 × 5 × 4 × 3 × 2 × 1 / 3 × 2 × 1
= 840

Ans. 840

जरूर पढ़िए:

इस पेज पर आपने क्रमचय एवं संचय की परिभाषा को पढ़ा और साथ ही क्रमचय एवं संचय से सम्बंधित महत्वपूर्ण प्रश्नों को हल करना भी सीखा।

क्रमचय एवं संचय से संबंधित कोई प्रश्न हैं तो कमेंट में पूछे।

2 thoughts on “क्रमचय एवं संचय के सूत्र, नियम और उदाहरण”

  1. 1,2,3,4,5,6,7,8,9 अंको के साथ दो या दो से अधिक अंको की कितनी ऐसी संख्याए बनाई जा सकती है, ताकि प्रत्येक ऐसी संख्या में प्रत्येक अंक का उपयोग ज्यादा से ज्यादा एक बार किया जाता है तथा अंक आरोही क्रम में दिखायी देते है।

    Reply
  2. AK class me 30 boy and 22 girl h unhe upsamuh me bibhajit Kiya jata hjinme se pirtek me se 2 boy ya 3 ladkiya h | aise up samuh banane ke tariko ki adikhtam sankheya Kya hogi |

    Reply

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.